неизменными
Если мы взмахнем палкой, которая зафиксирована с одной стороны, то ее свободный конец всегда будет лежат на поверхности, равноудаленной от неподвижной точки – и в случае геометрии Евклида имеющей форму сферы. Таким образом, новые поверхности показывают нам, где мог бы оказаться свободный конец палки, если бы мы попытались проделать то же самое в геометрии «Дихронавтов».
Когда мы делаем взмах в пространстве «Дихронавтов», длина палки (по определению) остается постоянной, однако ее протяженность в конкретном направлении может расти без каких-либо ограничений! Например, если палка изначально имеет длину 5 и расположена вдоль оси u, мы можем повернуть ее так, чтобы свободный конец оказался в точке x=12, y=0, u=13, поскольку и в том, и в другом случае x2 + y2 — u2 = -25. Если палка изначально имеет длину 5 и параллельна оси x, то мы аналогичным образом можем привести ее свободный конец в положение x=0, y=13, u=12, поскольку x2 + y2 — u2 в обоих случаях равно 25. Но несмотря на то, что отдельные координаты могут принимать сколь угодно большие значения, связывающее их соотношение не позволяет повернуть первую палку так, чтобы ее положение совпало с одним из возможных положений второй, и наоборот.
x
y
u
x
y
u
x
y
u
x
y
u
и наоборот
При повороте тела в двух измерениях его поведение будет зависеть от того, являются ли оба измерения «пространственноподобными», как, например, x и y, или же парой «пространственноподобного» и «времениподобного» – как x и u. В первом случае результат будет выглядеть точно так же, как поворот в евклидовом прстранстве. Во втором – линии, равноудаленные от центра вращения будут иметь форму не окружностей, а гипербол, и протяженность тела вдоль одной из одной из осей может меняться в бесконечных пределах.
x
y
x