Светлый фон

41. Как и в примечании 17 к этой главе, когда я говорю о частицах, составляющих макроскопический объект, то на самом деле речь идет о полном физическом состоянии этого объекта. В классической теории это состояние задается координатами и скоростями фундаментальных составляющих объекта. В квантовой механике состояние задается волновой функцией, описывающей составляющие объекта. Заметив, что я делаю упор на частицы, вы, возможно, вспомните о полях. Читатель с техническим образованием, возможно, в курсе, что, согласно квантовой теории, влияние поля передается частицами (к примеру, действие электромагнитного поля передается фотонами); более того, квантовая теория поля также показывает, что макроскопическое поле может быть описано математически как определенная конфигурация частиц — так называемое когерентное состояние частиц. Так что моя ссылка на «частицы» подразумевает и поля тоже. Информированный читатель заметит также, что некоторые квантовые свойства, такие как квантовая запутанность, могут описать состояния объекта в квантовом варианте более тонко, чем в классическом. Мы в нашей дискуссии по большей части можем игнорировать эти нюансы; все, что нам нужно, — законопослушное единообразное развитие физического мира.

42. Точнее говоря, вероятность того, что частицы камня сговорятся соскочить со скамейки, настолько до нелепости мала, что на временных масштабах, представляющих для нас интерес, статистическую возможность того, что камень меня спасет, можно не учитывать.

43. В философской литературе множество компатибилистских гипотез. Среди них подход, который я описываю, ближе всего к тому, что предложил и разработал Дэниел Денет, к книгам которого я вас направляю за более подробным описанием: Daniel Dennett, Freedom Evolves (New York: Penguin Books, 2003), а также Elbow Room (Cambridge, MA: MIT Press, 1984). Я размышлял над этими идеями с тех самых пор, когда меня впервые подтолкнула к ним Луиза Восгерчян, одна из моих самых влиятельных учителей. Восгерчян — профессор музыки в Г арварде — глубоко интересовалась тем, как научные открытия связаны с эстетическими ощущениями; она попросила меня написать о человеческой свободе и творческом начале с точки зрения современной физики.

44. Искусственный интеллект и машинное обучение иллюстрируют этот момент еще нагляднее. Исследователи разработали алгоритмы для игр, таких как шахматы или го, которые способны дополняться на основе анализа успеха или неудачи предыдущих ходов. Внутри компьютера, где работает такой алгоритм, у нас нет ничего, кроме частиц, двигающихся туда и сюда под полным контролем физических законов. Тем не менее алгоритм улучшается. Алгоритм учится. Ходы алгоритма становятся творческими. Мало того, настолько творческими, что после нескольких часов такой внутренней доработки лучшие образцы способны продвинуться в игре от уровня начинающего игрока до победы над игроками мирового класса. См.: David Silver, Thomas Hubert, Julian Schrittwieser, et al., "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play", Science 362 (2018): 1140-44.