Светлый фон

100.0

>>> scipy.constants.physical_constants['electron mass']

(9.10938356e-31, 'kg', 1.1e-38)

Matplotlib

Matplotlib

Matplotlib (http://matplotlib.sourceforge.net/) — это гибкая библиотека для сборки интерактивных 2D и 3D графиков, которые также могут быть сохранены как собранные вручную численные показатели. API во многом отражает API MATLAB (http://www.mathworks.com/products/matlab/), что упрощает переход пользователей MATLAB на Python. В галерее Matplotlib по адресу http://matplotlib.sourceforge.net/gallery.html содержится множество примеров, а также исходный код к ним, что позволяет воссоздать их самостоятельно.

Тем, кто работает со статистикой, можно взглянуть на Seaborn (https://stanford.edu/~mwaskom/software/seaborn), более новую библиотеку для работы с графикой, предназначенную для визуализации статистики. О ней рассказывается в этой статье, посвященной тому, как освоить науку о данных (http://bit.ly/data-science-python-guide).

Для того чтобы строить графики, задействуйте Bokeh (http://bokeh.pydata.org/), использующую собственные библиотеки для визуализации, или Plotly (https://plot.ly/), основанную на библиотеке D3.js (https://d3js.org/), написанной на JavaScript, однако бесплатная версия Plotly может потребовать, чтобы вы хранили свои графики на их сервере.

Pandas

Pandas

Pandas (http://pandas.pydata.org/) (имя основано на фразе Panel Data — «панель с данными») — это библиотека, предназначенная для манипуляций с данными. Основана на NumPy, которая предоставляет множество полезных функций для получения доступа, индексирования, объединения и группирования данных. Основная структура данных (DataFrame) похожа на структуру, которую можно найти в среде статистического ПО R (то есть гетерогенные таблицы данных — имеющие в одних столбцах строки, а в других числа — с возможностью индексирования имени, операций с временными рядами, а также автоматического выстраивания данных). С ней также можно работать как с таблицей SQL или Excel Pivot Table, используя методы вроде groupby() или функции вроде pandas.rolling_mean().

Scikit-Learn

Scikit-Learn

Scikit-Learn (https://pypi.python.org/pypi/scikit-learn) — это библиотека, посвященная машинному обучению, которая предоставляет способы понижения размерности, заполнение отсутствующих данных, регрессию и модели классификации, модели деревьев, кластеры, автоматическую подстройку параметров моделей, построение графиков (с помощью Matplotlib) и многое другое. Она хорошо задокументирована и поставляется с огромным количеством примеров (http://scikit-learn.org/stable/auto_examples/index.html). Scikit-Learn работает с массивами NumPy, но обычно может взаимодействовать с порциями данных от Panda без особых проблем.