x
x
x
x
x
Обеспечительный механизм принципа неопределенности – выражение состояний через «враждебные»
Обеспечительный механизм принципа неопределенности – выражение состояний через «враждебные»
Тот же фокусник, надо сказать, умеет показывать и обратный фокус. В другой день вы решили начать описание мира, выбрав в качестве половины величин компоненты количества движения и вынужденно отбросив враждебные им координаты. Для каждого из возможных значений количества движения (как всегда, вдоль некоторого направления) у вас есть отвечающее ему состояние – именно они в этот день являются вашими «любимыми» состояниями. Как построить из них состояние, отвечающее определенному значению координаты вдоль того же направления? Фокусник спрашивает вас, чему равно это значение координаты. Если, например, это x222 = 0,031 нм, то вы говорите ему: «31 тысячная нанометра», и он с помощью этого числа производит в своем калькуляторе вычисления с каждым из возможных значений количества движения по очереди и сообщает вам набор чисел. Получив эти числа, вы благодарите мастера и используете их, чтобы построить «длинную сумму с умножениями» из всех ваших любимых состояний на этот день. Эта длинная сумма и будет состоянием |x222⟩.[248]
x
x
Сейчас, пожалуй, подходящий (а может быть, даже запоздалый) момент для пояснения того, какие «вещи» q, r, s (и так далее) с самого начала годятся, чтобы составлять суммы состояний типа a · |q⟩ + b · |r⟩+ c · |s⟩. Каждая из букв q, r, s должна полностью описывать возможные хотя бы в принципе значения величин из дружественного набора. Например, если речь идет о двух электронах, то под буквой q могут пониматься координаты и спины обоих электронов; указать координаты только одного электрона или как-то иначе уменьшить объем данных означало бы сознательно обречь себя на неполноту описания. «Возможные хотя бы в принципе» означает, что не исключен вариант, когда значения координат отвечают положению электрона, скажем, на Луне (со спином же большого разнообразия, как всегда, нет: только одна из двух возможностей относительно одного выбранного направления в пространстве для каждого электрона). То же верно в отношении букв r и s: они выражают какие-то другие значения величин из того же набора (электроны в каких-то других местах, с как-то ориентированными спинами). А если, скажем, q и r выбраны указанным образом, то можно ли в качестве s взять значения не координат, а количества движения для одного или даже двух электронов (заодно с компонентами спина, которые прямо сейчас нас меньше интересуют)? Можно, но в этом случае |s⟩ будет иметь вид «длинной суммы с умножениями», которую, в случае затруднения с нашей стороны, помогает строить известный на весь мир фокусник. В основе конструкции все равно должны быть состояния, отвечающие определенным значениям координат, раз уж мы выбрали координаты, только этих состояний потребуется «очень много», чтобы построить состояние, отвечающее определенному значению количества движения. Резюме: можно складывать друг с другом любые состояния, но они не должны страдать от очевидной неполноты данных и все должны быть выражены через состояния, отвечающие величинам из одного класса дружественности[249].