совместный
*****
Главная тайна квантовой механики. Предложенное Борном в 1926 г. правило «вычислять квадраты» ни разу не подвело на практике. Идея принесла ее автору Нобелевскую премию (в 1954 г.). С тех пор появилось много работ, в которых с разных точек зрения показано, что ничем, кроме квадрата, вероятности определяться и не могут. Однако «все просто» только задним числом. Для начала статью Борна, в которой утверждалась связь волновой функции с вероятностями, не приняли к публикации в журнале, куда она была первоначально направлена. Она вышла в другом журнале, и случившееся промедление сыграло ключевую роль: Борн успел исправить свое первоначальное утверждение. Вывод, сформулированный в статье, состоял в том, что вероятность пропорциональна самой волновой функции. Текст остался без изменения, но при корректуре (т. е. в самый последний момент перед собственно печатью) было добавлено примечание, состоящее из одной фразы: «Более тщательный анализ показывает, что вероятность пропорциональна квадрату [волновой функции]».
печатью
К правилу Борна надо относиться как к закону природы: это обобщение наблюдений, которое отлично работает. Это вообще-то довольно удивительная привязка волновой функции, управляемой детерминистским уравнением, к вероятностной природе мира. Но это и на редкость непонятный закон природы. Вероятности чего? Того, что случится один из возможных результатов. Но вот логическая цепочка, заводящая в странное место. Если волновая функция – это какая-то сумма a · |q⟩ + b · |r⟩ + c · |s⟩ + …, а q, r, s и т. д. – это возможные значения некоторой величины (например, количества движения или энергии), то «случиться» может факт обнаружения (измерения) одного из этих значений, например q. Уже случившееся перестает быть одной из возможностей – оно становится фактом. Одновременно с этим все остальные возможности r, s и т. д. перестают быть возможностями; они не реализовались. Но факт о состоянии мира после измерения должен быть отражен в волновой функции. Та волновая функция, в которой содержались различные потенциальные возможности, больше не имеет отношения к изучаемой системе, а имеет отношение только та ее часть, которая соответствует свершившемуся результату, a · |q⟩. Все остальные слагаемые b · |r⟩ + c · |s⟩ + … в волновой функции должны исчезнуть, просто заменившись на нуль.
чего
a
q
b
r
c
s
q, r, s
q. Уже случившееся
r, s
только
a
q
b
r