Светлый фон

Спросим себя: как это возможно, чтобы точка на прямой входила в какой-нибудь интервал этой прямой? Это возможно только потому, что в данном интервале есть и еще какая-нибудь, хотя бы одна, точка. Ведь, если этой другой точки нет, тогда наш интервал только и будет состоять из одной первично данной точки, т.е. вовсе не будет интервалом. Теперь зададим себе другой вопрос: как возможно, чтобы на каком-нибудь интервале прямой было две точки? Это возможно только потому, что эти две точки отличаются друг от друга, т.к. иначе было бы не две точки, а опять-таки только одна. Зададим также и третий вопрос: что нужно для того, чтобы две точки на прямой отличались между собою? Для этого необходимо, чтобы между данными двумя точками было какое-нибудь расстояние, т.е., чтобы между этими двумя точками можно было бы поместить еще и третью точку. Очевидно, что тот же самый вопрос нужно поставить и о трех точках, о четырех, о пяти точках и т.д. Другими словами, если имеется на данном интервале одна точка, то это возможно только потому, что на данном интервале возможна и целая бесконечность точек. Вот что значило невинное, и с первого взгляда, банальное утверждение, что окрестность точки – есть тот интервал прямой, в котором данная точка помещается. Уже маленькое напряжение мысли приводит здесь к понятию бесконечности точек, из которых состоит окрестность; а математико-лингвисты только и взяли исходный математический тезис о нахождении точки в интервале и тем самым превратили его в очевиднейшую и вполне бесплодную банальность.

Но попробуем еще минуту задуматься над положением точки в интервале – окрестности, как тут же вытекает и еще один очень важный вывод: как бы две точки на данном интервале ни были близки одна к другой, они могут быть еще ближе того. А это значит, что все точки данного интервала прямой мы рассматриваем, как переменные, как всегда подвижные, как всегда стремящиеся к другим точкам, которые являются для них пределом и которые они никогда достигнуть не могут. Какая-нибудь переменная точка бесконечно приближается к постоянной или последовательность положений данной точки имеет другую точку своим пределом, если с момента определенной близости переменной точки к постоянной, переменная всегда остается в окрестности постоянной точки. Следовательно, окрестностью данной точки на прямой является целая бесконечность точек этого интервала, как угодно к ней близких. Вот в этом-то и заключается все дело, в этой как угодно большой, взаимной близости точек. И подобного рода тезис в скрытой форме уже содержался в первоначальном тезисе, который, как мы уже сказали выше, никак нельзя брать в метафизической изоляции и тем самым превращать его в ненужную банальность.