они образуют то, что мы сейчас называем гильбертовым пространством. Преимущество этого гильбертова пространства перед «пространством» всех непрерывных функций x(s) основано на некотором свойстве полноты. Благодаря этому свойству можно сформулировать необходимое и достаточное условие для приведения формы (13) к виду (14) в терминах некоторой «вполне непрерывности», позволяющей провести хорошо известное в алгебраическом случае рассуждение: числа c1, c2, ... определяются как последовательные максимумы функции K на «сфере» |x|2 = 1.
x
s
c
c
K
x
Как подсказывает теорема об интегральной квадратичной форме, связь между пространством функций x(s) и гильбертовым пространством векторов (x1, x2, ...) осуществляется произвольной полной ортонормированной системой u1(s), u2(s), ... и выражается уравнением
x
s
x
x
полной
u
s
u
s
1
xn =
xn