Светлый фон

они образуют то, что мы сейчас называем гильбертовым пространством. Преимущество этого гильбертова пространства перед «пространством» всех непрерывных функций x(s) основано на некотором свойстве полноты. Благодаря этому свойству можно сформулировать необходимое и достаточное условие для приведения формы (13) к виду (14) в терминах некоторой «вполне непрерывности», позволяющей провести хорошо известное в алгебраическом случае рассуждение: числа c1, c2, ... определяются как последовательные максимумы функции K на «сфере» |x|2 = 1.

x s c c K x

Как подсказывает теорема об интегральной квадратичной форме, связь между пространством функций x(s) и гильбертовым пространством векторов (x1, x2, ...) осуществляется произвольной полной ортонормированной системой u1(s), u2(s), ... и выражается уравнением

x s x x полной u s u s

1

xn =

xn