Светлый фон

***

***

В данном конкретном случае если первоначальное расстояние от Ахиллеса до черепахи обозначить как S, то путь, который Ахиллесу надо пройти до черепахи, равен этому расстоянию плюс сумма S/10n, при n стремящемся к бесконечности (n=1,2,3…). Сумма всех отрезков равна 1,11111хS (одна целая и единица в периоде, умноженное на S). А время прохождения этих отрезков будет равно, соответственно, этому числу, поделённому на скорость ходьбы Ахиллеса. Совсем не бесконечно большое число.

В данном конкретном случае если первоначальное расстояние от Ахиллеса до черепахи обозначить как S, то путь, который Ахиллесу надо пройти до черепахи, равен этому расстоянию плюс сумма S/10n, при n стремящемся к бесконечности (n=1,2,3…). Сумма всех отрезков равна 1,11111 х S (одна целая и единица в периоде, умноженное на S). А время прохождения этих отрезков будет равно, соответственно, этому числу, поделённому на скорость ходьбы Ахиллеса. Совсем не бесконечно большое число.

Для лучшего понимания того, каким образом получается, что сумма бесконечно большого количества определённых величин может не превышать конкретного значения, можно рассмотреть такой пример. Допустим, нам надо записать в десятичной форме число 1/3. Это выглядит, как известно, так: 0,3333333… То есть, «ноль целых и три в периоде». Заметим: каждая последующая тройка имеет значение в десять раз меньше предыдущей, и их мы можем приписывать сколь угодно долго. Но в сумме они никогда не превысят числа 1/3.

Для лучшего понимания того, каким образом получается, что сумма бесконечно большого количества определённых величин может не превышать конкретного значения, можно рассмотреть такой пример. Допустим, нам надо записать в десятичной форме число 1/3. Это выглядит, как известно, так: 0,3333333… То есть, «ноль целых и три в периоде». Заметим: каждая последующая тройка имеет значение в десять раз меньше предыдущей, и их мы можем приписывать сколь угодно долго. Но в сумме они никогда не превысят числа 1/3.

***

***

Другими словами, в сознании должна присутствовать и такая аксиома: бесконечное количество членов числового ряда вовсе не свидетельствует о бесконечно большой величине их суммы. Именно отсутствие в сознании такой аксиомы и делает «логичным» данный софизм. Автор этого софизма, фактически, просто нашёл способ бесконечно долгого анализа процесса прохождения Ахиллесом заданного пути (по принципу «у попа была собака»). Но длительность анализа процесса и длительность самого процесса вовсе не обязательно взаимосвязаны. (Кстати, это не единственный софизм древних, где, по сути, банально не учитываются свойства бесконечно малых величин. Составители этих софизмов были явно не в ладах с математикой.)