Светлый фон
свое

Та же идея работает не только для x, но и для других координат, а равным образом и для количества движения вдоль любого из направлений: каждая из этих величин порождает предписание, по-своему изменяющее волновые функции. Как относиться к этой новой жизни привычных понятий? Координаты и компоненты количества движения на наших глазах сделали впечатляющую карьеру от скромных величин, которые в доквантовом мире всегда имели определенные численные значения, до «абстракций над абстракциями»: они стали правилами, предписывающими, во что превратить любую волновую функцию. В этом качестве они больше не выражаются числами, но в некотором роде они «представительствуют» от имени всех значений «своей» величины: наше , например, несет в себе знание о всех возможных значениях координаты. В разнообразных ситуациях может так оказаться, что и само задано некоторым сложным образом (скажем, «собрано» из других предписаний), да и состояния построены таким способом, что их свойства сразу не видны; и тем не менее если известно, что предписание отвечает координате x, то из него можно извлечь знание обо всех состояниях |x1⟩, |x2⟩, |x3⟩, …, применяя это к произвольно выбранным состояниям. Почти всегда в результате будет получаться какое-то «совсем» другое состояние, но в редких случаях применение предписания приводит к самому безобидному из возможных изменению состояния: всего лишь к умножению его на число. А произойти это может только с теми самыми |x1⟩, |x2⟩, |x3⟩, … – состояниями, отвечающими определенным значениям координаты, насколько бы замысловатая конструкция ни маскировала их природу. Про них говорят (пример удачной терминологии), что это собственные состояния нашего предписания . При этом у нас достаточно информации, чтобы выяснить, какое именно состояние из |x1⟩, |x2⟩, |x3⟩, … нам встретилось: об этом сообщает то число, на которое состояние умножилось! Оно непременно равно одному из x1, x2, x3, … – с каким из них совпадет, такое, значит, и состояние. Продолжая мой пример чуть выше: если, например, число равно 0,031 нм, то, значит, мы наткнулись на собственное состояние |x222⟩.

x всех x x x x x x x собственные x x x x x x x

Если вы сейчас спросите меня, а не таким же ли образом мы находим стационарные состояния и уровни энергии в атоме, то я вынужден буду разрушить всю оставшуюся интригу: да, применяя на этот раз гамильтониан (тоже предписание по изменению волновых функций, только отвечающее не координате и не компоненте количества движения, а энергии) ко всем волновым функциям, мы ищем среди них те, которые изменяются самым безобидным образом, т. е. всего лишь умножаются на число. Этим среди прочего и занимался Шрёдингер на вилле «Д-р Хервиг», попутно сетуя на свое недостаточное знание математики. Числа, которые возникают при этом в качестве множителей, и составляют список дискретных значений энергии. Эти собственные числа гамильтониана определяют те самые исключительные случаи, в которых электрон все-таки может стационарно существовать в атоме, – знание, которым мы пользовались в долг на прогулке 10.