Светлый фон
Дискретное из непрерывного: все дело в собственных состояниях

Дискретное из непрерывного: все дело в собственных состояниях

Поскольку гамильтониан получен из выражения для энергии, числа E здесь – это значения энергии. Какие? Те самые!! Те, которые может (которые только и может) иметь система с данным гамильтонианом в стационарных состояниях («несущественно» зависящих от времени). Из этого уравнения требуется определить как собственные значения гамильтониана – те значения энергии E, при которых найдутся (не равные нулю) решения Ψ, так и сами эти решения, по одному или по нескольку для каждого из найденных значений E. Именно так вычисляются дискретные значения энергии, при которых электрон может существовать в атоме. Последнее приведенное уравнение тоже называется уравнением Шрёдингера, но, в отличие от выписанного ранее, – стационарным уравнением Шрёдингера. В нем нет зависимости от времени; оно говорит, каким образом атом (молекула, …) может существовать «на постоянной основе», и к нему-то и надо обращаться по всем вопросам о «пойманном» движении (когда части системы не разлетаются прочь)[257].

E E Ψ E стационарным

Окинем еще раз взглядом стратегию квантования: каким же это магическим образом появляются дискретные значения энергии, которыми мы без особых объяснений, взаймы, пользовались на предыдущей прогулке – скажем, для электрона в атоме или для колебательных систем. Стартовые данные – это выражение для энергии: для энергии движения и для формы энергетической ямы (и для энергии взаимодействия между электронами, если их несколько). Пока все непрерывно, нет ни намека на дискретность. Ключевой шаг, и даже не шаг, а скачок, – изобрести волновые функции, а энергию превратить в предписание по изменению волновых функций – гамильтониан. Следующий шаг – найти те волновые функции, которые «максимально устойчивы» под действием гамильтониана, т. е. претерпевают всего лишь умножение на число. Это собственные состояния гамильтониана. Вместе с каждым собственным состоянием мы находим и то число, на которое собственное состояние умножается в результате применения гамильтониана, – это значения энергии E, при которых уравнение только и имеет ненулевые решения для волновой функции. Математика, через которую пробивался Шрёдингер в самом конце 1925 г., показывает, что для электрона в яме, для колебательной системы и вообще во всех случаях «пойманного» движения таких значений энергии «мало» – они дискретны. Этим задача про дискретные значения энергии и решена: не предполагая никакой дискретности заранее, мы ее получили! Но можно сделать большее: увидеть, как возникает матричная механика Гайзенберга. Вообще любую волновую функцию можно записать в виде «длинной суммы с умножениями», выразив ее через собственные состояния гамильтониана. Но тогда всякое другое предписание по изменению волновых функций, например отвечающее количеству движения, полностью определяется тем, что оно делает с этими собственными состояниями, – а это в точности описывается гайзенберговской таблицей. Таким образом через область абстрактного и пролегла дорога от непрерывного к дискретному[258].