E
тогда
Что делает электрон в атоме? Реализует собственные состояния гамильтониана. А энергия – повышенная, правда, в ранг гамильтониана – и в самом деле правит миром.
Что делает
*****
Волновая функция в поисках реальности. От движения в том виде, как мы его хорошо знаем, среди окруживших нас абстракций осталось не так много. Координата и количество движения перестали быть просто числами и превратились в содержимое гайзенберговских таблиц или, что эквивалентно, в операторы, воздействующие на волновые функции, – какие уж тут траектории! Волновые функции – абстрактные сущности, из которых операторы производят другие сущности того же сорта. Комбинация нескольких операторов, называемая гамильтонианом, становится двигателем эволюции – с помощью уравнения Шрёдингера предписывает, как волновым функциям меняться во времени. В такой эволюции волновых функций теперь и предлагается искать ответы на вопросы, которые в наивной форме звучали как «что, куда и как движется?». При этом, без сомнения, воодушевляет тот факт, что из уравнения Шрёдингера можно получать дискретные значения энергии стационарных состояний, которые и наблюдаются в жизни. Но что все-таки происходит в реальности? И как установить с ней контакт, если рассуждаем мы в терминах абстрактных волновых функций? От высоких абстракций пора каким-то образом спуститься к реалиям, в терминах которых мы понимаем происходящее в нашем обычном трехмерном пространстве.
траектории
происходит
Но там движение было и остается для нас главным. Это основной индикатор событий. Мы судим о происходящем в мире по материальным последствиям: какой кусок материи из числа тех, за которыми мы способны следить, где оказался – как, другими словами, двигался. Стрелка прибора – пример такого «куска материи»: мы видим, куда она подвинулась; другой распространенный индикатор – затемнение или, наоборот, осветление на экране или фотопластинке, возникающее там, куда попало что-то материальное. И стрелка, и пятно – макроскопические объекты, даже если мы разглядываем их в микроскоп: мы все же фиксируем их состояние практически непосредственно. Напротив, самих электронов и их собратьев мы видеть не можем, и говорить о том, что происходит с ними, удается лишь в той мере, в какой мы способны построить цепочку рассуждений, ведущую от абстракции волновой функции к сдвигу индикатора в ходе эксперимента – к наблюдаемому движению/перемещению. Основополагающий пример тут – наблюдение (измерение) компоненты спина электрона. Спин – не движение чего-либо в пространстве, а «внутреннее» свойство элементарных частиц, поэтому наш шанс «измерить» спин состоит в том, чтобы каким-то образом «связать» его с движением в пространстве. В парадигмальном приборе, который служит этой цели, электрон отклоняется вверх или вниз в зависимости от того, какова компонента его спина, «вверх» (1/2 ħ) или «вниз» (–1/2 ħ). Это выражают фразой «движение электрона запутывается с его спиновым состоянием»; говорят еще, что пространственное состояние электрона запутывается с его спиновым состоянием. Устройство, которое создает это запутывание, называется прибором Штерна – Герлаха по имени авторов реального эксперимента (первоначально, в 1922 г., поставленного с атомами серебра), который сыграл ключевую роль в исследовании квантового мира[259]. Мимоходом мы уже встречали прибор Штерна – Герлаха на рис. 11.2; помимо своей актуальной физической реализации, он стал неотъемлемой частью многочисленных мысленных экспериментов по прояснению логической структуры наших представлений об устройстве мира.