Что касается однородного уравнения ах — by = 0, то очевидным семейством решений его будет х = b∙k, у = a∙k, k — произвольное целое число. То, что это общее решение однородного уравнения следует из того, что данное уравнение эквивалентно сравнению ах = ()(mod b) и в силу взаимной простоты а и b это сравнение можно поделить на а (см. [3]), после чего сравнение превращается в х = ()(mod b), т. е. х должно делиться на Ь.
однородного
ах — by
х
b∙k, у
a∙k, k
ах
b
а
b
а
х
b
х
Ь
В итоге, получаем решение
уравнения (1). Поэтому в исходных переменных получаем:
Если здесь положить k = —1, то получаем дираковское решение: n0 = n3 = —2. Однако видно, что оно вовсе не наименьшее, и существует множество других, еще меньше. Впрочем, в каком-то смысле дираковский ответ действительно наименьший из возможных: именно, если искать наименьшее по абсолютной величине возможное количество рыб, то таким в самом деле окажется (-2).