Светлый фон

(?p, K) =

K

?

(

?, K p

? K

)

= (?, K),

? K

p

 

p

 

распространённое по всем конечным и бесконечным (вещественным) простым точкам p, и сформулировать закон взаимности, утверждающий, что (?, K) = 1 для любого главного иделя ?. Всё это было бы хорошо, если бы мы только не исключили в нашем определении (?p, K) некоторых специальных p, а именно бесконечных точек и разветвлённых простых идеалов. В одном специальном случае с помощью чрезвычайно сложных вычислений Куммеру удалось дать правильное определение (?p, K) для исключительных p. Четвёртое открытие Гильберта состоит в изобретении простого и остроумного приёма, позволившего преодолеть это трудное препятствие, ставшее на пути дальнейшего прогресса. Ограничимся вначале иделями, являющимися n-ми степенями в наших исключительных точках. Другими словами, предположим, что уравнение ?p = ?pn разрешимо для p-адических значений ?p иделя ? для этого конечного числа точек. В этом случае определить (?, K) не представляет никакого труда:

? K ? K