полем классов
J
k
единичных иделей
идеалов
K
k
n
k
k
f
n
f
K
f
K
k
Как уже говорилось выше, сам Гильберт не смог доказать эти теоремы в полной общности. Однако, отправляясь от гауссовской теории родов в квадратичных полях и исследований Куммера, он начал постепенно двигаться, разбирая простейшие примеры, создавая на своём пути необходимый запас новых понятий и предложений, до тех пор, пока ему не открылся весь ландшафт полей классов. Мы не можем даже пытаться дать здесь идею высокотехнических доказательств всех результатов. Завершение своей работы он оставил своим последователям. Вероятно, ещё далёк тот день, когда мы будем располагать сравнительно полной теорией относительных числовых полей Галуа.
Кронекер показал, а Гильберт упростил его доказательство, что абелевы поля над основным рациональным полем являются подполями круговых полей и тем самым получаются из трансцендентной функции e2?ix подстановкой рациональных значений в её аргумент x. Для абелевых полей над мнимым квадратичным полем аналогичную роль играет так называемое комплексное умножение эллиптических и модулярных функций («Jugendtraum 13 Кронекера»). В то время как Генрих Вебер вслед за Кронекером и Р. Фютер под руководством Гильберта воплотили эту мечту в реальность, сам Гильберт обратился к модулярным функциям нескольких переменных, определяемых числовыми полями, и исследовал их связь с арифметикой. Этих своих исследований он никогда не публиковал, однако его идеи на основе его заметок были развиты О. Блюменталем, а позже Э. Гекке. Полученные результаты многообещающи, но всё ещё далеки от полноты. Характерным признаком богатства мысли Гильберта является то, что в этот самый продуктивный период своей жизни он передал своим ученикам целый комплекс проблем, столь привлекательных, как связи между теорией чисел и модулярными функциями 14.
e