Светлый фон
ψ Ψ ψ q q иногда

Объекты другого типа, по формальным признакам тоже похожие на наши абстрактные | ⟩, имеют более геометрический характер: это векторы, т. е. стрелки, проведенные из выбранной точки в пространстве. Если пространство двумерно или трехмерно, то векторы вполне наглядны; для пространств более высокой размерности предлагается думать, что это «как в трехмерном пространстве, только не в трехмерном, а в многомерном» (что, надо признать, само по себе несколько абстрактно). Каждый вектор можно умножить на любое число; в результате получится растянутый вектор, если число больше единицы, сжатый вектор, если число меньше единицы, но положительно, и вектор, смотрящий в противоположную сторону, если число отрицательно. Складываются же векторы по правилу сложения перемещений: чтобы найти сумму двух векторов рисуем вектор  а из его конца проводим и затем рисуем стрелку, соединяющую начальную точку, откуда растет с полученной точкой. Можно действовать и наоборот, сначала нарисовать проведя стрелку из выбранной точки, а из ее конца провести получится то же самое, потому что не имеет значения, по каким сторонам параллелограмма добираться из одной вершины в противоположную. При этом выполняется несколько «очевидных», но важных правил типа Написанное равенство означает смещение на вектор за которым следует в точности противоположное ему смещение. Кстати, нуль в правой части надо было бы записывать как потому что это нулевой вектор. Он выражает отсутствие всякого смещения и, строго говоря, является единственным из всех векторов, который не представляется наглядно стрелкой (у него вообще нет направления). Этот нулевой вектор ведет себя как нуль при сложении с другими векторами: (то же самое имеет место и для нулевой волны при сложении с любой другой волной).

из его конца не

И волны, и векторы – примеры, показывающие, что объекты некоторого класса можно складывать и умножать на числа таким образом, что получаются другие объекты того же класса и при этом выполнены «очевидные» правила, включая правило раскрытия скобок. Таковы же и волновые функции[245].

Мне не избежать некоторого дублирования терминов. Можно сказать «система описывается таким-то состоянием», а можно – «система описывается такой-то волновой функцией». «Волновая функция» и «состояние» – это синонимы, но в некоторых контекстах мне проще говорить о состояниях, а в некоторых других – о волновой функции. Возможно, это наследие того, по каким книгам я учился, но, так или иначе, я буду употреблять оба названия. Нестандартное же название «высказывания» было нужно мне только для того, чтобы подчеркнуть их абстрактный характер, и так их никто не называет.