Светлый фон

Теория вероятностей постоянно оперирует с понятием «зависимости» и «независимости» нескольких случайных величин. Здравый смысл подсказывает, что наши события (то есть приход 1-го и приход 2-го) независимы. Тогда все исходы, т. е. пары (время прихода первого и время прихода второго) равновероятны. Мы сейчас нарисуем зону, в которой друзья встретились, и посмотрим, какая у нее площадь (для левой части рис. 143).

Если они пришли в один и тот же момент, то из таких точек мы получим диагональ одинаковый момент прихода. Ясно, что они встретятся (и время ожидания будет равно 0).

А если они немножко отклонились от диагонали влево/вправо? Тогда тоже встретятся, потому что один из них пришел немножко раньше другого и дождался второго. Надо понять, на какое самое большое число минут им можно отклониться друг от друга по времени прихода, чтобы встреча еще произошла? На 15 минут. На одну четверть часа. Иначе будет как в известной песне[35].

Мы получили границы зоны встречи. Что происходит на границе? Первый пришел, например, в 9 часов 50 минут, а второй в 9:35. Тогда второй, который пришел в 9:35, уже собирался уходить, и тут появился первый.

Теперь надо посчитать площадь «встречи» (то есть участка квадрата, описывающего пары моментов прихода, при которых встреча произойдет) и поделить ее на общую площадь фазового пространства. Вычислим сначала площадь оставшейся части для случая квадрата (рис. 144).

s = (3/4)2 = 9/16

s

— площадь оставшейся части, S = 12 = 1 — площадь квадрата,

S

— площадь «встречи».

Рис. 144. Встреча возможна только внутри шестиугольника (15′ = 0,25 часа).

Рис. 144.

 

Число 7/16 чуть-чуть меньше 1/2. То есть ждут всего 15 минут, а вероятность встречи близка к 50%.

Упражнение. А какой будет ответ, если фазовое пространство не квадратное, а прямоугольное (рис. 143, справа)?

Упражнение.

Про теорию вероятностей можно говорить очень долго. Это отдельная, очень большая, интересная наука и для школьной программы, и для людей, занимающихся другими науками. В теории вероятностей есть свои проблемы. Например, данные про большой город типа Москвы входят в очень резкий контраст с базовыми предположениями теории вероятностей. Рассмотрим состояние пробок на дорогах. Оно складывается из миллиона случайных решений отдельных людей. Каждый, у кого есть машина, решает, поехать ли на машине или на общественном транспорте, то есть примерно миллион человек одновременно решают задачу, на чем им ехать. И типовое предположение теории вероятностей о том, что выборы людей независимы друг от друга, предсказывает абсолютно одинаковые пробки при одинаковых метеорологических условиях. Если наша теория верна, если решения независимые, то должны быть идентичные дорожные ситуации при одинаковых условиях. Аварии учесть трудно. Но одна, две мелких аварии не сильно влияют на трафик. Математики очень мало знают про транспорт. Но самое главное — есть стойкое ощущение, что эта модель неверна. Люди друг с другом каким-то образом связаны. Они реагируют на фазы Луны, пятна на Солнце или на что-то еще и принимают одинаковые решения. (Например, если их просят назвать известного русского поэта, все как один говорят: Пушкин.) Это — единственное объяснение, почему при абсолютно идентичных условиях бывают диаметрально противоположные по структуре пробки. Сегодня город едет, а завтра — стоит.