Светлый фон

Мы научились умножать. Произведением точек с координатами (х, у), (z, t) служит точка на плоскости с координатами (xz − yt, xt + yz).

(х, у), (z, t) (xz − yt, xt yz).

Но этого для нас мало, потому что мы не видим, где «живет» на плоскости точка с такими координатами. Мы должны увидеть ее, понять, как ее построить. Как получить ее из векторов, порождаемых точками (x, у), (z, t). Какие у этих векторов характеристики? У них есть длины и углы поворота (отклонения) от оси х. Пользуясь этими данными, мы должны получить новый вектор (xz − yt, xt + yz).

x, у (z, t). отклонения х. (xz − yt, xt yz).

Нам нужно провести некоторое исследование. Для этого разработаем терминологию.

У комплексного числа точки на плоскости первая координата называется вещественной частью, а вторая мнимой. Мнимой ее называют потому, что, когда начинали с комплексными числами общаться, считали, что числа i не существует. Существуют только вещественные числа. Остальные не существуют, они как бы у нас в воображении, imaginary numbers. С тех пор у комплексных чисел есть действительная и мнимая части.

вещественной частью мнимой. i

Рассмотрим еще такую конструкцию. Для каждого вектора рисуется вектор, симметричный относительно вещественной оси. Точка (х; у) перейдет в точку (х, −у) (см. рис. 147).

(х; у) (х, −у)

Рис. 147. Векторы, симметричные относительно оси абсцисс.