аксиома выбора,
15. Вот яркий пример. При помощи аксиомы Цермело удаётся доказать следующую теорему, не укладывающуюся в привычные рамки геометрической интуиции: существует такое разбиение шара на конечное число частей, что, передвигая эти части в пространстве, из них можно сложить два таких же шара. (Для ясности: под шаром понимается самый обычный шар в трёхмерном евклидовом пространстве, а под движением – преобразование, составленное из поворотов и параллельных переносов.) Кажется, что эту теорему можно легко опровергнуть, произведя подсчеты объёмов, но всё дело в том, что каждая из частей разбиения отнюдь не является «сплошной», а представляет собою множество точек, настолько прихотливо расположенных, что оно, это множество, не имеет объёма (на точном математическом языке не является измеримым). Указанную теорему получили в 1924 г. польские математики Банах и Тарский, и сформулированное в ней утверждение принято называть парадоксом Банаха – Тарского.
измеримым).
парадоксом Банаха – Тарского.
Парадокс Банаха – Тарского может быть усилен в двух направлениях. Во-первых, как исходный шар, так и результирующая пара шаров могут быть заменены на произвольные множества из обширного класса множеств. А именно: пусть А и В суть два множества в трёхмерном евклидовом пространстве, каждое из коих ограничено и обладает непустой внутренностью; тогда существует такое разбиение множества А на конечное число частей, что, передвигая эти части, из них можно сложить множество В. Говоря образно, бильярдный шар можно разломать на конечное число частей и затем сложить из этих частей планету или – при другом способе разламывания – цветок (разумеется, в подобного рода метафорических иллюстрациях словосочетанию «можно разломать» не следует придавать буквального физического смысла). Во-вторых, если в качестве А взять шар, а в качестве В – пару конгруэнтных с А шаров, то для переделки А в В достаточно разбить А на пять частей (меньшего числа частей уже недостаточно). Доказательства этих двух усилений можно найти, например, в интернете, в статье Francis Е. Su «The Banach – Tarski Paradox» (http://www.math.hmc.edu/~su/papers.dir/banachtarski.pdf, см. там соответственно теоремы 14 и 20). Вообще, парадокс Банаха – Тарского достаточно освещён в литературе; среди публикаций выделяются энциклопедическая монография S. Wagon «The Banach – Tarski paradox» (Cambridge etc., 1985. XVI. 251 p.) и популярная статья R. M. French «The Banach – Tarski Theorem» (The Mathematical Intelligencer. 1988. Vol. 10. № 4. Pp. 21–28).