Светлый фон
А В А В. А В А А В А

16. И действительно, как показал в 1970 г. Соловей (Solovay), такая точка зрения (все множества измеримы) не может привести к противоречию. Вместе с тем ещё за 20 лет до этого П. С. Новиков построил точечное множество (так называемое второе множество Новикова), относительно которого непротиворечиво полагать, что оно неизмеримо. (В подобных результатах «построить объект» понимается в смысле 'указать имя объекта в языке теории множеств', так что использование аксиомы Цермело не допускается.)

второе множество Новикова),

17. При доказательстве указанных в комментарии 12 общеизвестных фактов из математического анализа необходим лишь ослабленный случай общего принципа, постулирующий существование требуемого множества в ситуации, когда рассматриваемая коллекция множеств счётна. Этот частный принцип носит название счётной аксиомы выбора; именно без этой счётной аксиомы и нельзя обойтись при изложении начальных глав анализа.

счётной аксиомы выбора;

Приведём для контраста пример использования континуальной аксиомы выбора, когда выбор элементов осуществляется применительно к континуальной коллекции множеств. А именно с опорой на эту аксиому докажем такую теорему: если объединение двух множеств континуально, то хотя бы одно из этих множеств континуально. (Стандартное доказательство основано на наделении континуума порядком, превращающим его во вполне упорядоченное множество, что, в свою очередь, требует применения аксиомы выбора к коллекции, мощность которой превосходит континуальную.)

В силу теоремы Кантора – Бернштейна достаточно доказать, что если плоскость представлена как объединение двух множеств, то хотя бы одно из слагаемых содержит континуальное подмножество; это и будем доказывать. Если какая-то из вертикальных прямых целиком содержится в первом слагаемом, то она и образует искомое подмножество первого слагаемого. Если же это не так, то на каждой вертикали найдётся точка из второго слагаемого; континуальная аксиома выбора позволяет выбрать на каждой вертикали ровно по одной такой точке; выбранные точки образуют искомое подмножество второго слагаемого.

Рассмотрение счётных множеств и, в частности, натурального ряда требует менее высокого уровня абстракции, чем рассмотрение множеств континуальных. (Ведь даже представление о множестве всех точек прямой – это довольно сложная абстракция.) Поэтому счётная аксиома выбора вызывает меньше недоверия, нежели континуальная (и тем более нежели связанная с ещё более высокими мощностями). Вот что в 1905 г. писал Борель о несчётной аксиоме выбора в краткой заметке, давшей толчок к его упоминавшейся переписке с Адамаром и др.: «Возражения, которые можно выставить здесь, действительны и для всякого рассуждения, в котором предполагается произвольный выбор, совершённый несчётное множество раз; такие рассуждения находятся вне пределов математики» (Remarques sur les principes de la théorie des ensembles // Mathematische Annalen. 1905. B. 60. S. 194–195). При любом конкретном применении аксиомы выбора можно ограничиться её частным вариантом, связанным с конкретной мощностью соответствующей коллекции множеств. Иногда удаётся добиться понижения этой мощности, как это мы видели только что на примере континуальной аксиомы выбора.