Утверждается что при:
M/m = 1, N = 3 (всем ежам ясно);
M/m = 100, N = 31;
M/m = 10000, N = 314;
M/m = 1000000, N = 3141,
ну и т. д.
Решение.
РешениеРассмотрим процесс упругого соударения двух шаров. Введем некоторые обозначения. Скорость большего шара обозначим через V1 малого — через v2. Эти скорости — алгебраические величины, т. е. они могут быть любого знака, смотря по тому, в какую сторону движется шар. Так, в начальный момент времени (до соударений) V1(0) < 0, v2(0) = 0. Отношение масс шаров
Известно, что в системе центра масс (Ц.М.) системы двух шаров столкновение заключается в том, что шары меняют свои скорости на противоположные. Поэтому обозначая скорости шаров в системе Ц.М. до столкновения через, соответственно, V~1- и v~2-, после столкновения — соответственно, V~1+ и v~2+, а скорость самого Ц.М. — через vc, получаем:
Т.е., подставляя (1) в (2), для скоростей шаров после соударения получаем:
После столкновения шаров легкий шар (второй) еще сталкивается со стенкой. При этом скорость тяжелого шара не меняется, а скорость легкого меняется на противоположную: v2+ |-> v2+. Таким образом, если до k-го столкновения шары имели скорости, соответственно, V1(k) и, v2(k), то перед следующим, (л + 1) — м столкновением скорости их будут: