Светлый фон

Вещественная часть не изменилась, а мнимая поменяла знак. Было (xz − yt, xt + yz), стало (xz − yt, −xt − yz). Получается, что если мы берем произведение двух сопряженных, то получается сопряженное к их произведению (рис. 148).

(xz − yt, xt yz), (xz − yt, −xt − yz). если мы берем произведение двух сопряженных, то получается сопряженное к их произведению 

Рис. 148. Математики сказали бы так: умножение комплексных чисел «уважает» операцию сопряжения, и наоборот. Можно вначале сделать сопряжение каждого сомножителя, а потом перемножить их, а можно вначале перемножить, а после сделать сопряжение перемноженных. Результат будет одинаковым.

Рис. 148.

 

Хотелось бы уметь делить одну точку на плоскости на другую точку. Это тоже совсем не сложно, если, конечно, не делить на ноль. Но на ноль мы и раньше не могли делить. Так что ничего удивительного в том, что мы не будем делить на 0, нет. Значит, так. Попробуем разделить на число, которое не равно нулю. Используем основное свойство дроби: дробь не изменится, если и числитель, и знаменатель умножить на одно и то же число. В качестве такого числа мы возьмем число, сопряженное к z + ti:

дробь не изменится, если и числитель, и знаменатель умножить на одно и то же число. z + ti:

Итак, мы получили комплексное число в стандартном виде: вещественная  и мнимая  части.

Всё. Теперь мы умеем делить, умножать, складывать и вычитать — всё как с обычными действительными числами. Однако мы пока не видим, как геометрически это выглядит, а это очень важно и чрезвычайно полезно.

Давайте все-таки это поймем. Для этого перемножим

(х + yi)(z + ti)(x − yi)(z − ti).

(х + yi)(z + ti)(x − yi)(z − ti).

Если я буду перемножать почленно, то получится

(x+yi)(z+ti)(x−yi)(z−ti) = [(xz−yt)+(xt+yz)i][(xz−yt)−(xt+yz)i].

(x+yi)(z+ti)(x−yi)(z−ti) = [(xz−yt)+(xt+yz)i][(xz−yt)−(xt+yz)i].

Обратите внимание, получились сопряженные комплексные числа — значит, их произведение равно