Так вот, оказывается, что всё, что мы знаем про целые числа — делимость, простота, основная теорема арифметики — удивительным образом переносится на Z[i] то есть на систему Гауссовых чисел. Любое Гауссово а + bi с целыми а и b единственным образом раскладывается в произведение простых чисел, которые уже ни на что не делятся.
Z
i
а + bi
а
b
единственным образом
Небольшое замечание: на числа 1, i, −1 и −i делятся все Гауссовы числа, так же, как в целых числах на прямой все числа делятся на 1 и −1. Например, (а + bi) : i = b − ai. Это чуть-чуть усложняет ситуацию, потому что однозначность разложения на простые множители выполняется лишь с точностью до умножения и деления на 1 , i, −1 и −i. Потому что с точки зрения теории делимости (а + bi) и (b − ai) — это один и тот же простой множитель.
i,
−i
(а + bi) : i
b − ai.
i
i.
(а
bi)
(b − ai)
Для целых чисел на комплексной плоскости вообще появляется много фокусов, которых не было для целых чисел на прямой. Например, число 2 перестало быть простым. Ибо оно раскладывается на множители 2 = (1 + i)(1 − i). Кстати, из геометрии это тоже следует (рис. 155).
i
i