По правилу умножения мы должны взять произведение двух длин. Длина вектора 1 +
Посмотрим, что произойдет с углами. При умножении углы складываются. Но они у нас противоположные по знаку, значит, при сложении получится 0. То есть при умножении мы получим вектор длины 2, направленный по оси
Какие еще числа перестают быть простыми? Например, число 5. Теперь 5 = (2 +
Оказывается, есть. Более того, ответ на заданный вопрос теснейшим образом связан с вопросом про «обычные» целые числа, а именно: какие простые числа можно представить в виде суммы двух полных квадратов — то есть двух чисел, из которых можно нацело извлечь квадратный корень? Потрясающим образом этот вопрос решается введением Гауссовых чисел и изучением их арифметики.
Окинем еще раз взглядом наши построения. Мы ввели комплексные числа. Потом в них выделили семейство «целочисленных» комплексных чисел и назвали их гауссовыми. Там развили делимость, научились делить с остатком, обнаружили «Основную теорему арифметики». Зачем? Ответ таков: некоторые вопросы из арифметики обычных целых чисел можно решить только через гауссовы числа.
Какие простые числа представляются в виде суммы двух квадратов? Эта задача чрезвычайно важная в теории
Вопросы математического кодирования — это вопросы примерно такого же типа, как и задача о разложении простого числа в сумму двух квадратов. И вот долгожданный ответ на поставленный выше вопрос.
Теорема. (Ферма — Эйлер — Гаусс. Гаусс здесь упомянут потому, что он ввел Гауссовы числа и установил простым образом все три эквивалентности, приводимые в формулировке.)