комплексные числа.
Пусть q1 = х + yi, q2 = z + ti два комплексных числа, второе из которых не равно ни нулю, ни единице, но при этом лежит на единичной окружности (то есть имеет модуль, или длину, равную единице). Второе число, q2, мы на время всего рассуждения зафиксируем, а первое число, q1, будем «перебирать», подставляя всевозможные комплексные значения.
q1 = х + yi, q2 = z + ti
q2,
q1,
С помощью формулы q1q2 мы сконструировали некоторое преобразование точек плоскости: любая точка q1 при этом преобразовании переходит в точку q1q2. Ключевое утверждение состоит в том, что у этого преобразования будет только одна неподвижная точка: q1 = 0 (то есть только одна точка останется на месте).
q1q2
q1
q1q2.
q1
Проведем доказательство этого утверждения. Допустим, какая-то точка q1 осталась на месте. Это означает, что q1 = q1q2. Перенесем оба выражения в левую часть, получим:
q1
q1
q1q2.
q1(1 − q2) = 0.
q
q
Мы договорились, что q2 ≠ 1, а тогда 1 − q2 ≠ 0, и на этот множитель можно сократить обе части равенства. Следовательно, q1 = 0, что и утверждалось. Таким образом, наше преобразование плоскости является движением (что было установлено выше) и оставляет на месте ровно одну точку, а именно точку q1 = 0.
q2
q2