Согласно основной теореме арифметики, существует единственное разложение натурального числа на простые множители с точностью до порядка сомножителей. Значит, по обе стороны от знака равенства стоят наборы одинаковых простых чисел. В частности,
Так как пересечений простых множителей в наборах
Поэтому все простые числа набора
Это очень сильное утверждение (потому что квадратов очень мало среди натуральных чисел). 1, 4, 16, 25, 36, 49… — они встречаются все реже.
Введем новые обозначения. Так как наши выражения — квадраты, то обозначим:
Тогда
Вспомним, чему равен