При подстановке мы увидим, что у нас появляются разные виды треугольников. Узкие вытянутые треугольники, у которых катет и гипотенуза отличаются на единицу: 12, 5, 13. Треугольники, у которых катеты почти равны друг другу: 20, 21, 29 (рис. 138).
В каждой целочисленной точке плоскости будет возникать вариант пифагорова треугольника. Возьмем точку (10; 3) и посмотрим, какой треугольник получится:
Задача решена методом Диофанта. Мы получили описание всех пифагоровых треугольников.
Второе решение задачи о пифагоровых треугольники.
Второе решение задачи о пифагоровых треугольники.Алгебраическая геометрия — часть 2.
Есть уравнение, которое нужно решить в целых числах, понимая, что по абсолютной величине